Solution of Linear Systems

A linear combination of the variables x, x7, ..., Xy 15 a sum
(1) arxy +axxy+ - aNxy

where ay is the coefficient of x; fork =1,2, ..., N.
A linear equation in x1, x3, .. ., xn is obtained by rcquiring the linear combination
in (1) to take on a prescribed value b; that is,

4 v Ao ogmvn L LA — B
L) aijx{ + azx 2 -1 = ONIN

Systems of linear equations arise frequently, and if M equations m ¥ unknowns
are given, we write
ajx; +apx2 +---+anxy =b

azixy +anxy +--+awxy =b;

(3)

arix] +agexa + -+ awan =by

ap1x) +amaxa + -+ apnxy = by,
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* AX=B can be transformed into an equivalent system
which may be easier to solve.

» Equivalent system has the same solution as the original

system.

» Allowable operations during the transformation are:

(1) Interchanges:

(2) Scaling:

(3) Replacement:

The order of two equations can be changed.
Multiplying an equation by a nonzero constant.
An equation can be replaced by the sum of itself and

a nonzero multiple of any other equation.




Example 3.15.  Find the parabola y = A + Bx + Cx® that passes through the three points
(1, 13,42, =1}, and (3, 1),

For each point we obtain an equation relating the value of x o the value of ¥, The
result is the linear system

A+ B+ O= 1 at{l, 1}
{4 A+2E +4C = -1 at{2, =1}
A+3IB4+9C= 1 at {3, 13,

The variable A is eliminated from the second and third equations by subtracting the
first equation from them. This is an application of the replacement transformation (3), &nd
the resulung equivalent linear system is

A+B4+ C= 1
(3 B+3C=-2
2B+B80= 0.

The variuble B is eliminated from the third equation in (5) by subtracting from it two Hmes
the sccond equation. We arive at the equivalent uppar-triangular syelam:

A+B+ C= 1
(6 B+3C=-2
20 - g,

The back-substimution algorithm is now used to find the coefficients © = 4/2 = 2, B =

=1 =32 = .S' and A = ] — (—8) — Z = 7, and the cquation of the parabola is
y=T7=8x4 2x" n

Gaussian Elimination for solving [A][X]: [c]
consists of 2 steps

1. Forward Elimination of unknowns

The goal of Forward Elimination is to transform the coefficient matrix into an
Upper Triangular Matrix

25 5 1 25 5 1
64 8 1|—»| 0 -48 -156
144 12 1 0 0 0.7

2. Back Substitution

The goal of Back Substitution is to solve each of the equations using the upper
triangular matrix.




Gaussian Elimination

The augmented matrix is [A|B] and the system AX = B is represented as follows:

ajpp ap - ay | by
a daxn --- an | b
(7) [AlB]=] . , , e
|_ ani any --- ann | by J

The system AX = B, with augmented matrix given in (7), can be solved by per-
forming row operations on the augmented matrix [A|B]. The variables x; are place-
holders for the coefficients and can be omitted until the end of the calculation.

Theorem 3.8 (Elementary Row Operations). The following operations applied to
the augmented matrix (7) yield an equivalent linear system.
(8) Interchanges: The order of two rows can be changed.
(9) Scaling: Multiplying a row by a nonzero constant.
(10) Replacement: The row can be replaced by the sum of that row and
a nonzero multiple of any other row; that is:
oW, = 10Wy —Mlp X TOWp.

x4+ 2x 4+ x3+4xy =13
2x) + Oxp +4x3 + 334 = 28
dxy 4+ 2x2 4+ 2x3 4+ x4 =20
=3x1 4+ x24+3x3+2x4= 0.

Example 3.16

pivot — 1 2 1 413
may =2 2 0 4 3] 2¢
m3 =4 4 2 2 1|20
myp = —3 -3 1 3 2| 6
12 4| 13
pivot — 0 -4 2 =5 2
myy = 1.5 0 -6 -2 -—15]|-32
myy=—175 | 0 7 6 14 45
12 1 4] 13
0 —4 2 -5 2
pivot — 0 0 =5 -75]|-35
myy=—19 [ 0 0 95 525|485

2 1 4| 13
0 -4 2 5| 2 x4=2, x3=4, x»=-1, x=3
0 0 =5 —75|-35




Forward Elimination

Linear Equations

A set of n equations and n unknowns

A X +apX, + X ...t X, = b1
Ay X F 8yp Xy + BpaXg .o+ A X, =D,

a, X +a,X +8.X+...+8 X =b

Forward Elimination

Transform to an Upper Triangular Matrix

Step 1: Eliminate x, in 2" equation using equation 1 as
the pivot equation (pivot row)

[ Eqm} x ()

1

Which will yield

a a a
ay X +A312X2 + "'+Aa1n n = Ab1
Q) Ay a,

all:pivot element, row 1:pivot row




Forward Elimination

Zeroing out the coefficient of x, in the 2" equation.

Subtract this equation from 2n equation

a a a
[azz _faﬂJXZ +---+(3~2n _fam}(n = bz _f

1 1 1

Or Where
a,X, +...+a, X =b, ' 4
2272 e 2nn T M2 azz = azz_ 7a12
1
! a21
A G~ Ty,
ay;

Forward Elimination

Repeat this procedure for the remaining
eqguations to reduce the set of equations as

Ay X + X, + 84X o+ 3 X, =Dy
Ay, X, + By Xy + .o+ Ay X, =D,

AgXy + gy Xy + .o+ 35, X, =Dy

n

A, X, + A Xy + o+ 3, X, = b




Forward Elimination

Step 2: Eliminate x, in the 3 equation.

Equivalent to eliminating x, in the 2" equation
using equation 2 as the pivot equation.

Eqn3-— % x (ag,)

22

Forward Elimination

This procedure is repeated for the remaining
equations to reduce the set of equations as

A Xy + X, + AaXg .+ X, = b1
Ay Xy + 8peXg + ... + 3y, X, =D,

Ay X, + ...+ 3y X, =Dy

a X, +..+a X =h




Forward Elimination

Continue this procedure by using the third equation as the pivot
equation and so on.

At the end of (n-1) Forward Elimination steps, the system of
equations will look like:

A X +a,X, + 8%+ + 8, X, =b;
Ay, X, + QygXg + .o+ By X, = b,

AgXy + ...+ 3, X, =D,

Forward Elimination

At the end of the Forward Elimination steps

a, o, a; - a, X b1
Ay, Ay a,, X, bz

gz A, X3 |= bs

a(n_l) X b(n'l)

nn _JL"*n n




Back Substitution

The goal of Back Substitution is to solve each of
the equations using the upper triangular matrix.

8, a, ag|[X| [b
0 Ay Ay || Xy |= bz
0 0 ayl|X; b,

Example of a system of 3 equations

Back Substitution

Start with the last equation because it has only
one unknown

(n-1)
— bn

X =
(n-1)
Ann

n

Solve the second from last equation (n-1)t
using X, solved for previously.

This solves for x,,_;.




Back Substitution

Representing Back Substitution for all equations
by formula

(i-1) (i)
b — > a; X,

— j=i+l Fori=n-1, n-2,....,1
X. = - ,N-2,....,
i (i-1)
ajj
and
(n-1)
X = by
gD

nn

Potential Pitfalls

-Division by zero: May occur in the forward elimination steps.

-Round-off error: Prone to round-off errors.

Improvements

Increase the number of significant digits
Decreases round off error

Does not avoid division by zero

Gaussian Elimination with Pivoting
Avoids division by zero

Reduces round off error
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Division by zero
Consider the system of equations
2%+ 6y+10z=0,
x+ 3y+ 3z=2,
3x+ 14y + 28z =—8.

2 6 10 | 0

1 3 3 | 2.

3 14 28 | —8
The first stage of elimination gives

2 6 10 | 0

00 -2 | 2L

05 13 | —8
‘We are unable to continue, unless we interchange the second and third rows:

2 6 10 | 0

05 13 | -8

00 —2 | 2

In this simple example, after the row pivoling, no further climination is required.
By back substitution,

The augmented matrix is

Xy = [—13(—1) — 8] = 1;

[—6(1) — 10(=1) + 0] = 2.

Trivial pivoting

Pivoting to Avoid a},f;)' =

If a}:f;,] = 0, row p cannot be used to eliminate the elements in column p below the
main diagonal. It is necessary to find row k, where uﬁ:] #0andk > p, and then in-
terchange row p and row k so that a nonzero pivot element is obtained. This process is
called pivoting, and the criterion for deciding which row to choose is called a pivoting
strategy. The trivial pivoting stralegy is as follows. If a}f;,’ # 0, do not switch rows.
If crjf;;] = 0, locate the first row below p in which (:fﬁ:] # (0 and switch rows k and p.

. . . (P Ly .
This will result in a new element @ ;,{,g # 0. which is a nonzero pivol element.

11



Round-off error

Example 3.17.  The values x; = x2 = 1.000 are the solutions to

; 1.133x; + 5281, = 6.414
& 24.14x) — 1210w = 22.93.

1.133x; +5.281x, = 6414

—113.7x = —113.5.
Back substitution is used to compute x> = —113.8/(—=113.7) = 1.001, and x; = (6.414 —
5.281(1.001))/(1.133) = (6.414 — 5.2806)/1.133 = 0.9956. n

24.14x), — 1.210x2 = 22.93
1.133x, + 5.281x, = 6.414.
24 14x; — 1.210x, =22.93

5.338x, = 35.338.

Back substitution is used to compute x2 = 5.338/5.338 = 1.000, and x; = (22.93 +
1.210¢1.000))/24.14 = 1.000. [ ]

Pivoting to reduce error

« Partial pivoting
» Scaled partial pivoting

12



Partial Pivoting

Gaussian Elimination with partial pivoting applies row switching to
normal Gaussian Elimination.

How?

At the beginning of the ki step of forward elimination, find the maximum of

N NP S [an

(find max of all elements in the column on or below the main diagonal )

If the maximum of the values is In the pth row, Kk < p <n,

apy

then switch rows p and k.

Partial Pivoting

What does it Mean?

Gaussian Elimination with Partial Pivoting ensures that
each step of Forward Elimination is performed with the

pivoting element |a,,| having the largest absolute value.

13



Partial Pivoting: Example

Consider the system of equations

10x, -7x, =7
-3, +2.099x, + 3%, =3.901
5X; =X, +5X, =6

In matrix form

10 7 0][x 7
~3 2099 6/[x, |- |3.901
5 -1 5||x, 6

Solve using Gaussian Elimination with Partial Pivoting using five
significant digits with chopping

Partial Pivoting: Example

Forward Elimination: Step 1
Examining the values of the first column
|20|, |-3], and |5| or 10, 3, and 5

The largest absolute value is 10, which means, to follow the
rules of Partial Pivoting, we switch rowl with row1.

Performing Forward Elimination

10 7 0fx 7 10 -7 0fx 7

-3 2099 6|x,|=|3.901 j 0 -0.001 6{x,|=|6.001

5 -1 5|x, 6 0 25 5|x| |25

14



10

Partial Pivoting: Example

Forward Elimination: Step 2
Examining the values of the first column
[-0.001| and |2.5| or 0.0001 and 2.5

The largest absolute value is 2.5, so row 2 is switched with
row 3

Performing the row swap

~7 0%, 7 10 -7 0fx 7

0 -0001 6|x,|=|6001] ——> |0 25 5|x|=| 25

0

25 5| X, 2.5 0 -0.001 6| x, 6.001

Partial Pivoting: Example

Forward Elimination: Step 2

Performing the Forward Elimination results in:

10 -7 0 Tx 7
0 25 5 |x,|=| 25
0 0 6002|x,| |6.002

15



Partial Pivoting: Example

Back Substitution

Solving the equations through back substitution

10 -7 0 X, 7 X3:6.002:l
0 25 5 |x,|=| 25 6.002
0 0 6.002]| x, 6.002 2.5—5X2
X, =—=
2 2.5
7+7x,-0
Xl = + X2 X3 :0
10

Scaled partial pivoting

tations could result in an erroneous answer. The technique of scaled partial pivoting
or equilibrating can be used to further reduce the effect of error propagation. In scaled
partial pivoting we search all the elements in column p that lie on or below the main
diagonal for the one that is largest relative to the enfries in its row. First search rows p
through N for the largest element in magnitude in each row, say s,:

(13) sp = max{lapl, pgils - lanylt for r=p, p+1,.... N.
The pivotal row £k is determined by finding

i} a a ay
| A.p| B | pp|.| p+lp|“” | .?\'p| )

Sk Sp Sptl SN

(14)

Now interchange row p and £, unless p = k. Again, this pivoting process is designed
to keep the relative magnitudes of the elements in the matrix U in Theorem 3.9 the
same as those in the original coefficient matrix A.

16



Scaled partial pivoting example

ot

Potential Pitfalls

-Division by zero: May occur in the forward elimination steps.

-Round-off error: Prone to round-off errors.

Improvements

Increase the number of significant digits
Decreases round off error

Does not avoid division by zero

Gaussian Elimination with Pivoting
Avoids division by zero

Reduces round off error

17



LU Decomposition
(Triangular Factorization)

LU Decomposition

A non-singular matrix [Al has a traingular factorization
if it can be expressed as

[A]=[L]u]

where
[L] = lower triangular martix

Ll = upper triangular martix

18



LU Decomposition

Method: [A] Decompose to [L] and [U]

1 0O Ofu, u, uUg,

(A= [LJu]-

l,, 1 0 0 u, Uy
ly Ll 100 O

Uz,
[U] is the same as the coefficient matrix at the end of the forward
elimination step.

[L] is obtained using the multipliers that were used in the forward
elimination process

Example

423

Given #=|-3 1 4]. Find matrices L and U so that LU = A.
245
1 00 4 2 3 4 2 3
010-314]=-314]
001 2 4 5 2 4 5
1 4 2 3 4 2 3
2 5 5
-2 0+ &, [_3 1 4]
v o1/lz a4 s 2 45
1 2 3
_3 p 5 18 [4 Z 3J
4 & 4 =|-3 1 4
1 01|03 X 2 45
i 3
1 AN
i i} - 5| =1-%1 4]
i £ 3 o0 -4 ] =)
H

19



LU Decomposition

Given [A][X]=[c]
Decompose [A]into[L] and [U] = [L]U][Xx]=[c]

Define [z]=u][X]
Thensolve [L][z]=[c] for [z]

And then solve  [U][X]=[z] for [X]

LU Decomposition

Example: Solving simultaneous linear equations using LU Decomposition

Solve the following set of 25 5 1f|q 106.8
linear equations using LU 64 8 1|la,|=|177.2
Decomposition 144 12 1||a,| |279.2

Using the procedure for finding the [L] and [U] matrices

1 0 025 5 1
[A]=[LJu]=|256 1 0|0 -48 -156
576 35 10 0 07

20



LU Decomposition

Example: Solving simultaneous linear equations using LU Decomposition

1 0 0]z [1068]
set [L]Z]=][C] 256 1 0 zi ~|177.2
576 35 1)z,| |279.2)

2] [106.8 ]
sovefor [Z] [z]=|z,|=|-96.21
z,| | 0.735

LU Decomposition

Example: Solving simultaneous linear equations using LU Decomposition

25 5 1 J[a,] [106.8
0 -48 -156| a,|=|-96.21
0 0 07 |la,| | 0735

set Ix]-[z]

Solve for

[X]

&
a, | =
a

3

0.2900
19.70
1.050

21



Factorization with Pivoting

l 2 6
Given #-= [ 4 8 -1]. Can A be factored A=LU?

-2 3 35

1 00 l1 2 o l & 6
01 EI] 4 8 —l] = 4 8 —l]

oo 1/l-23 5 -2 3 5

(1 0 Oy 1 2 6 1 2 &
4 1 IZI] o 0 -25] = [ 4 8 -1
0o o1l -2 3 5 -2 3 5
1 0 0yv/1 2 6 1 2 6
4 1 0 [EI n} —25] = [ 4 § -1
-2 01 o7 17 -2 3 5

Factorization with Pivoting

 Theorem. If A is a nonsingular matrix, then there
exists a permutation matrix P so that PA has an LU-
factorization

PA =LU.

* Theorem (PA = LU; Factorization with
Pivoting). Given that A is nonsingular. The solution X
to the linear system AX=B , is found in four steps:

Construct the matrices L,U and P .

Compute the column vector PB .

Solve LY=PB for Y using forward substitution.
Solve UX=Y for X using back substitution.

PN

22



Example 3.22,  Show that the following matrix cannot be factored directly as A = Lu:

100112 6] [12 6

PA=1{0 0 1 4 8 -1|l=(-2 3 35

010/[-23 5| |48 -]

[1 2 6

pivot— |0 7 17| =

pivot — 1 2 6 myp=0|0 0 —2:‘:]
H11]=-'2 —2 3 5
my= 4| 4 8 -1

Is LU Decomposition better or faster than
Gauss Elimination?

Let's look at computational time.

n = number of equations

n3
To decompose [A], time is proportional to 3

To solve [U]X]=[C] ~and [L]z]=[c]

: , n
time proportional to —-

23



Total computational time for LU Decomposition is proportional to

n® n’ n®
— 4+ 2(— or —+4n
3 (2 ) 3

2

Gauss Elimination computation time is proportional to

n® n?
_+_
3 2

How is this better?

LU Decomposition

What about a situation where the [C] vector changes?

In LU Decomposition, LU decomposition of [A] is independent
of the [C] vector, therefore it only needs to be done once.

Let m = the number of times the [C] vector changes

The computational times are proportional to

3 52 3
o n.n o n 2
Gauss Elimination = m(? + ?) LU decomposition =3 +m(n°)

Consider a 100 equation set with 50 right hand side vectors

LU Decomposition = 8.33x10°  Gauss Elimination = 1.69x10’

24



Simultaneous Linear Equations:
Iterative Methods

Jacobi and Gauss-Seidel Method

Example 3.26. Consider the system of equations

dx— y+ z= 7
(1) 4x -8y + z=-21
—2x+ yv+45z= 15

These equations can be written in the form

T4+y-z
X=—————————
4
2 =
(2) 1,:ﬂ
‘ 8
) [54+2x -y
Ty

25



T+ vk — % -Algebraically solve each linear equation for x;

X1 =
4 L
21 +4x + 2 -Assume an initial guess (xq, yo.z0) = (1,2,2)
\;A - @ @ 0
* 8 -Solve for each x; and repeat
15 4+ 2x¢ — wk . L e
Ul =———= -Check if error is within a pre-specified tolerance.

Table 3.2 Convergent Jacobi Iteration for the Linear
System (1)

k X Vi Tk
0 1.0 2.0 2.0
1 1.75 3.375 3.0
2 1.84375 3.875 3.025
3 1.9625 3.925 2.9625
4 1.99062500 3.97656250 3.00000000
5 1.99414063 3.99531250 3.00093750
15 1.99999903 3.99999985 2.99999993
19 2.00000000 4.00000000 3.00000000
Jacobi Gauss-Seidel
X1 = THw—a T+ Yk — zk
4 Xyl = f
I s Bk 21 + 4xpq1 + 2k
Vi1 = g Vi1 = g
) 15+ 2x¢ — Wi B 15 4+ 2xp41 — Vit
Ut =———% b 5

(x0, Y0, z0) = (1,2,2)

Table 3.2 Convergent Jacobi Iteration for the Linear Table 3.4  Convergent Gauss-Seidel Iteration for the

System (1) System (1)

k Xk Yk Ik k Xk ¥k i

0 1.0 2.0 20 0 1.0 2.0 2.0

1 1.75 3.375 3.0 1 1.75 3.75 2.95

2 1.84375 3.875 3.025 2 1.95 3.96875 2.98625

3 1.9625 3.925 2.9625 3 1.995625 3.99609375 2.99903125

4 1.99062500 3.97656250 3.00000000 . 5 : .

5 1.99414063 3.99531250 3.00093750 : ; :

) ) B . 1.99999983 3.99999988 2.99999996

: - . 9 1.99999998 3.99999999 3.00000000

15 1.99999993 3.99999985 2.99999993 10 200000000 4.00000000 3.00000000
19 2.00000000 4.00000000 3.00000000

26



Algorithm

A set of n equations and n unknowns:
X +apX, 3% ot A X, =Dy
Ay, X + 8y Xy + 8pXg + .+ 8y X, =D,

auX +a,X +aX +...+a,X, =b,

If: the diagonal elements are
non-zero

Rewrite each equation solving
for the corresponding unknown

ex:
First equation, solve for x,

Second equation, solve for x,

Algorithm
Rewriting each equation )
o oG A A Ay e From Equation 1
=
all
Cy — Ay X —peXg.n . —a,,X _
X, = = From equation 2
a22
« = Cog — g% — A4 Xpeeenn = a2 Xn2 — A X, From equation n-1
n-1 =
an—l,n—l
_ G A X 8 X A naXn From equation n
=
a

27



anxy+anxy 4o tagxj oo+ avan =b

a Xy +axXxs 4o+ aziXj 4.+ NXN =b
ajixy+agpxz -+ djixXj 4o+ GiNIN =b;
aN1X1+anaxz 4+ anixj+---+ annvxy = by.

Jacobi iteration.

b LK) » (k) B k) L]
10y  pkHD 2 2P TGN T TN T A T T AN
7 - ..
ajj
for j=1,2,....N.
Gauss-Seidel iteration:
) ] . (k+1) B (k) k)
(an & = bj —ajXy T — e —@jj Xy — @k — o — AiNYy
j - ..
ajj

forj=1,2,..., N.

Stopping criterion

Absolute Relative Error

X_new . Xgld
=——"x100
new

X

The iterations are stopped when the absolute relative error is
less than a prespecified tolerance for all unknowns.

28



Given the system of equations With an initial guess of
12x, +3X, -5x,; =1

X, 1
X, +5X, +3X, =28 X, |=| 0
3X, +7X, +13X, =76 X, 1
Rewriting each equation
12 3 -5][a| [1
1 5 3||a|=|28
3 7 13||a,| |76
= 1-3x, +5x, x, = 130)+50) _ o000
12
B 28 — X, —3X3 X, :wzﬂhgooo
, =L 9%
5
76-3%, —7X, , _ 76 —3(0.50000)— 7(4.9000) 3.0023
= 3 = — .
3 13 13
. The absolute relative error
Initial guess
| |1 el _[0.50000-1.0000| ;0 _ e csoes
X, | =10 *t7| 050000 |
X; 1
4.9000-0
€], = [—>—=———%100 =100.00%
4.9000
After Iteration #1
x,] [0.5000 el _[3:0923-1.0000| , o _ sz aso0s
X, | =| 4.9000 S| 3.0923 |
X, | |3.0923

The maximum absolute relative error after the first iteration is 100%

29



Repeating more iterations, the following values are obtained

Iteration a ‘ga‘l a, |5a|2 a, |ga|3
1 0.50000 | 67.662 4,900 100.00 3.0923 67.662
2 0.14679 | 240.62 3.7153 31.887 3.8118 18.876
3 0.74275 80.23 3.1644 17.409 3.9708 4.0042
4 0.94675 | 21.547 3.0281 45012 3.9971 | 0.65798
5 0.99177 | 4.5394 3.0034 | 0.82240 | 4.0001 | 0.07499
6 0.99919 | 0.74260 | 3.0001 | 0.11000 [ 4.0001 | 0.00000

The solution obtained | * 0.99919
X, |=| 3.0001
| X5 4.0001
(x, 1 1

the exact solution X, =13
| X3 4

dx— y+ z= 7 . . . .
dr—Sy+ z=-21 Example 3.27.  Let the linear system (1) be rearranged as follows:
-2x+ y+5z= |15

~2x+ y+5z= 15
4) dx —8y+ z=-21
dx— y+ z= T

Table 3.3  Divergent Jacobi Iteration for the Linear
System (4)

k Xt Yk 2k

0 1.0 2.0 2.0

1 1.5 3.375 5.0

2 6.6875 2.5 16.375

3 34.6875 8.015625 —17.25

4 —46.617188 17.8125 —123.73438
5 —307.929688 —36.150391 211.28125
6 502.62793 —124.929688 1202.56836




What went wrong?

Even though done correctly, the answer is not converging to the

correct answer

This example illustrates a pitfall of Jacobi/ Gauss-Siedel method: not
all systems of equations will converge.

Is there a fix?

Theorem 3.15 (Jacobi Iteration). Suppose that A is a strictly diagonally dominant
matrix. Then AX = B has a unique solution X = P. Iteration using formula (10)
will produce a sequence of vectors { P} that will converge to P for any choice of the

starting vector Py.

Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:

n
2| > Z‘au‘

1=
J#i

The coefficient on the diagonal must be greater than the sum of the other

coefficients in that row.

dx — y4+ z= 7
4x —8y+ z=-21
-2x+ y+5z= 15

In row 1: | —=2| < [1]+|5]
In row 2: | — 8] = 4]+ 1]
In row 3: 1] < 4] +]—=1].

Table 3.2 Convergent Jacobi Iteration for the Linear
System (1)

-2x4+ y+5z= 15

dx —8y+ z=-21

dy— v4 z= 7.
In row 1: 4] = | = 1|+
In row 2: | =8| > |4+ 1]
In row 3: I5] = | =2|+1].

Table 3.3  Divergent Jacobi Iteration for the Linear
System (4)

k Xk Yk Tk k Xk Yk Tk

0 1.0 2.0 2.0 0 1.0 2.0 2.0

1 1.75 3.375 3.0 1 —1.5 3.375 5.0

2 1.84375 3.875 3.025 2 6.6875 2.5 16.375

3 1.9625 3.925 2.9625 3 34.6875 8.015625 —-17.25

4 1.99062500 3.97656250 3.00000000 4 _46.617188 17.8125 —123.73438
5 1.99414063 3.99531250 3.00093750 5 —307.929688 —36.150301 211.28125

o g g 6 6 502.62793 —124.929688 1202.56836
15 1.99999993 3.99999985 2.99999993 . . . .
19 2.00000000 4.00000000 3.00000000
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