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Solution of Linear Systems
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in matrix form

• AX=B can be transformed into an equivalent system 
which may be easier to solve. 

• Equivalent system has the same solution as the original 
system. 

• Allowable operations during the transformation are:
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Gaussian Elimination for solving

consists of 2 steps

1. Forward Elimination of unknowns
The goal of Forward Elimination is to transform the coefficient matrix into an 
Upper Triangular Matrix

2. Back Substitution
The goal of Back Substitution is to solve each of the equations using the upper 
triangular matrix.

[ ][ ] [ ]CXA =

 
7.000
56.18.40

1525
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⎥
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⎢
⎢
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⎥
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⎡
 

112144
1864
1525
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Gaussian Elimination

Example 3.16
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Forward Elimination

Linear Equations
A set of n equations and n unknowns

11313212111 ... bxaxaxaxa nn =++++

22323222121 ... bxaxaxaxa nn =++++

nnnnnnn bxaxaxaxa =++++ ...332211

.                 .

.                 .

.                 .

Forward Elimination

Transform to an Upper Triangular Matrix
Step 1: Eliminate x1 in 2nd equation using equation 1 as             
the pivot equation (pivot row)

)(1
21

11

a
a

Eqn
×⎥
⎦

⎤
⎢
⎣

⎡

Which will yield

1
11

21
1

11

21
212

11

21
121 ... b

a
axa

a
axa

a
axa nn =+++

a11:pivot element, row 1:pivot row 
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Forward Elimination

Zeroing out the coefficient of x1 in the 2nd equation.
Subtract this equation from 2nd equation

1
11

21
21

11

21
2212

11

21
22 ... b

a
abxa

a
aaxa

a
aa nnn −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

'
2

'
22

'
22 ... bxaxa nn =++

nnn a
a
aaa

a
a
a

aa

1
11

21
2

'
2

12
11

21
22

'
22

           

 

−=

−=

M

Or Where    

Forward Elimination

Repeat this procedure for the remaining 
equations to reduce the set of equations as

11313212111 ... bxaxaxaxa nn =++++
'
2

'
23

'
232

'
22 ... bxaxaxa nn =+++

'
3

'
33

'
332

'
32 ... bxaxaxa nn =+++

''
3

'
32

'
2 ... nnnnnn bxaxaxa =+++

.                 . .

.                 . .

.                 . .
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Forward Elimination

Step 2: Eliminate x2 in the 3rd equation.
Equivalent to eliminating x1 in the 2nd equation   
using equation 2 as the pivot equation.

)(23 32
22

a
a

EqnEqn ×⎥
⎦

⎤
⎢
⎣

⎡
−

Forward Elimination

This procedure is repeated for the remaining 
equations to reduce the set of equations as 

11313212111 ... bxaxaxaxa nn =++++
'
2

'
23

'
232

'
22 ... bxaxaxa nn =+++

"
3

"
33

"
33 ... bxaxa nn =++

""
3

"
3 ... nnnnn bxaxa =++

.               .

.               .

.               .
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Forward Elimination

Continue this procedure by using the third equation as the pivot
equation and so on. 

At the end of (n-1) Forward Elimination steps, the system of 
equations will look like:

'
2

'
23

'
232

'
22 ... bxaxaxa nn =+++

"
3

"
3

"
33 ... bxaxa nn =++

( ) ( )11 −− = n
nn

n
nn bxa

.             .
.             .
.             .

11313212111 ... bxaxaxaxa nn =++++

Forward Elimination

At the end of the Forward Elimination steps

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

− )-(n
nn

3

2

1

n
nn

n

n

n

b

b
b
b

x

x
x
x

a

aa
aaa
aaaa

1

"
3

'
2

1

)1(

"
3

"
33

'
2

'
23

'
22

1131211

MMMM

L

L

L



9

Back Substitution

The goal of Back Substitution is to solve each of 
the equations using the upper triangular matrix.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

33

2322

131211

x
x
x

 
00

0
b
b
b

a
aa
aaa

Example of a system of 3 equations

Back Substitution

Start with the last equation because it has only 
one unknown

)1(

)1(

−

−

= n
nn

n
n

n a
b

x

Solve the second from last equation (n-1)th

using xn solved for previously.

This solves for xn-1.
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Back Substitution

Representing Back Substitution for all equations 
by formula

( ) ( )

( )1
1

11

−
+=

−− ∑−
= i

ii

n

ij
j

i
ij

i
i

i a

xab
x For i=n-1, n-2,….,1

and

)1(

)1(

−

−

= n
nn

n
n

n a
b

x

Potential Pitfalls
-Division by zero: May occur in the forward elimination steps.

-Round-off error: Prone to round-off errors.

Increase the number of significant digits
Decreases round off error

Does not avoid division by zero

Gaussian Elimination with Pivoting
Avoids division by zero

Reduces round off error

Improvements
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Division by zero

Trivial pivoting
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Round-off error

Pivoting to reduce error

• Partial pivoting
• Scaled partial pivoting
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Partial Pivoting

pka

Gaussian Elimination with partial pivoting applies row switching to 
normal Gaussian Elimination.

How?
At the beginning of the kth step of forward elimination, find the maximum of

nkkkkk aaa .......,,........., ,1+

If the maximum of the values is In the pth row, ,npk ≤≤

then switch rows p and k.

( find max of all elements in the column on or below the main diagonal )

Partial Pivoting

What does it Mean?

Gaussian Elimination with Partial Pivoting ensures that 
each step of Forward Elimination is performed with the 
pivoting element |akk| having the largest absolute value.
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Partial Pivoting: Example
Consider the system of equations

6x5xx5
901.3x3x099.2x3

7x7x10

321

321

21

=+−
=++−

=−

In matrix form

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

515
6099.23
0710

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

6
901.3
7

=

Solve using Gaussian Elimination with Partial Pivoting using five 
significant digits with chopping

Partial Pivoting: Example

Forward Elimination: Step 1
Examining the values of the first column

|10|, |-3|, and |5| or 10, 3, and 5

The largest absolute value is 10, which means, to follow the 
rules of Partial Pivoting, we switch row1 with row1.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

6
901.3
7

515
6099.23
0710

3

2

1

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

5.2
001.6
7

55.20
6001.00
0710

3

2

1

x
x
x

⇒
Performing Forward Elimination
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Partial Pivoting: Example

Forward Elimination: Step 2
Examining the values of the first column

|-0.001| and |2.5| or 0.0001 and 2.5

The largest absolute value is 2.5, so row 2 is switched with 
row 3

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

5.2
001.6
7

55.20
6001.00
0710

3

2

1

x
x
x

⇒
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

001.6
5.2

7

6001.00
55.20
0710

3

2

1

x
x
x

Performing the row swap

Partial Pivoting: Example

Forward Elimination: Step 2

Performing the Forward Elimination results in: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

002.6
5.2

7

002.600
55.20
0710

3

2

1

x
x
x
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Partial Pivoting: Example

Back Substitution
Solving the equations through back substitution 

1
002.6
002.6

3 ==x

1
5.2
55.2 2

2 =
−

=
x

x

0
10

077 32
1 =

−+
=

xx
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

002.6
5.2

7

002.600
55.20
0710

3

2

1

x
x
x

Scaled partial pivoting
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Scaled partial pivoting example

Potential Pitfalls
-Division by zero: May occur in the forward elimination steps.

-Round-off error: Prone to round-off errors.

Increase the number of significant digits
Decreases round off error

Does not avoid division by zero

Gaussian Elimination with Pivoting
Avoids division by zero

Reduces round off error

Improvements
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LU Decomposition
(Triangular Factorization)

LU Decomposition

[ ]L

[ ]A

[ ] [ ][ ]ULA  =

[ ]U

A non-singular matrix        has a traingular factorization 
if it can be expressed as

where

= lower triangular martix

= upper triangular martix
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LU Decomposition
Method: [A] Decompose to [L] and [U]

[ ] [ ][ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

33

2322

131211

3231

21

00
0

1
01
001

u
uu
uuu

ULA
ll

l

[U] is the same as the coefficient matrix at the end of the forward 
elimination step.

[L] is obtained using the multipliers that were used in the forward 
elimination process

Example
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LU Decomposition

Given          

Decompose       into       and     [ ]U[ ]L

Then solve                       for   

And then solve                          for

[ ][ ] [ ]C=Z L [ ]Z

[ ][ ] [ ]ZU =X [ ]X

[ ][ ] [ ]CXA =  

[ ]A [ ][ ][ ] [ ]CXUL =⇒   

Define [ ] [ ][ ]XUZ     =

LU Decomposition
Example: Solving simultaneous linear equations using LU Decomposition

Solve the following set of 
linear equations using LU 
Decomposition ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2.279
2.177
8.106

a
a
a

 
112144
1864
1525

3

2

1

Using the procedure for finding the [L] and [U] matrices

[ ] [ ][ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

7.000
56.18.40

1525

15.376.5
0156.2
001

ULA
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LU Decomposition

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

735.0
21.96
8.106

3

2

1

z
z
z

Z

Example: Solving simultaneous linear equations using LU Decomposition

Set

Solve for

[ ][ ] [ ]CZL =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2.279
2.177
8.106

15.376.5
0156.2
001

3

2

1

z
z
z

[ ]Z

LU Decomposition

[ ][ ] [ ]ZXU =

[ ]X

Example: Solving simultaneous linear equations using LU Decomposition

Set

Solve for

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

0.735
96.21-

106.8
  

7.000
56.18.40

1525

3

2

1

a
a
a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

050.1
70.19

2900.0

3

2

1

a
a
a
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Factorization with Pivoting

Factorization with Pivoting

• Theorem. If A is a nonsingular matrix, then there 
exists a permutation matrix P so that PA has an LU-
factorization

PA = LU.
• Theorem (PA = LU; Factorization with 

Pivoting). Given that A is nonsingular. The solution X
to the linear system AX=B , is found in four steps:

1. Construct the matrices L,U and P .
2. Compute the column vector PB .
3. Solve LY=PB for Y using forward substitution.
4. Solve UX=Y for X using back substitution.
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

104
012
001

L

[ ][ ] [ ]CZL =

Is LU Decomposition better or faster than 
Gauss Elimination?

Let’s look at computational time.

n = number of equations

To decompose [A], time is proportional to

To solve and                    

time proportional to

3

3n

[ ][ ] [ ]CXU =

2

2n
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Total computational time for LU Decomposition is proportional to

2
3

3
nn

+)
2

(2
3

23 nn
+ or

Gauss Elimination computation time is proportional to

23

23 nn
+

How is this better?

LU Decomposition

)
2
n

3
n(m

23

+ )n(m
3
n 2

3

+

51033.8 ×

What about a situation where the [C] vector changes?
In LU Decomposition, LU decomposition of [A] is independent 
of the [C] vector, therefore it only needs to be done once.

Let m = the number of times the [C] vector changes

The computational times are proportional to

Gauss Elimination =                          LU decomposition =

Consider a 100 equation set with 50 right hand side vectors

LU Decomposition =                       Gauss Elimination = 71069.1 ×
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Jacobi and Gauss-Seidel Method

Simultaneous Linear Equations:
Iterative Methods
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-Algebraically solve each linear equation for xi  

-Assume an initial guess

-Solve for each xi and repeat

-Check if error is within a pre-specified tolerance.

Jacobi Gauss-Seidel
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Algorithm

A set of n equations and n unknowns:

11313212111 ... bxaxaxaxa nn =++++

2323222121 ... bxaxaxaxa n2n =++++

nnnnnnn bxaxaxaxa =++++ ...332211

.                 .

.                 .

.                 .

If: the diagonal elements are 
non-zero

Rewrite each equation solving 
for the corresponding unknown

ex:
First equation, solve for x1

Second equation, solve for x2

Algorithm

Rewriting each equation

11

13132121
1 a

xaxaxac
x nn−−−
=

KK

nn

nnnnnn
n

nn

nnnnnnnnn
n

nn

a
xaxaxac

x

a
xaxaxaxac

x

a
xaxaxacx

11,2211

1,1

,122,122,111,11
1

22

23231212
2

−−

−−

−−−−−−−
−

−−−−
=

−−−−
=

−−−
=

KK

KK

MMM

KK

From Equation 1

From equation 2

From equation n-1

From equation n
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Stopping criterion

Absolute Relative Error 

100
x

xx
new
i

old
i

new
i

ia ×
−

=ε

The iterations are stopped when the absolute relative error is 
less than a prespecified tolerance for all unknowns.
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Given the system of equations
1  5x -3x  12x 321 =+

28 3x  5x  x  321 =++
76 13x  7x  3x 321 =++ ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
1

3

2

1

x
x
x

With an initial guess of

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

76
28
1

1373
351
5312

3

2

1

a
a
a

 

Rewriting each equation

12
531 32

1

xxx +−
=

5
328 31

2

xxx −−
=

13
7376 21

3

xxx −−
=

( ) ( ) 50000.0
12

15031
1 =

+−
=x

( ) ( ) 9000.4
5

135.028
2 =

−−
=x

( ) ( ) 0923.3
13

9000.4750000.0376
3 =

−−
=x

The absolute relative error

%662.67100
50000.0

0000.150000.0
1a =×

−
=∈

%00.100100
9000.4

09000.4
2a =×

−
=∈

%662.67100
0923.3

0000.10923.3
3a =×

−
=∈

The maximum absolute relative error after the first iteration is 100%

After Iteration #1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0923.3
9000.4
5000.0

3

2

1

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
1

3

2

1

x
x
x

Initial guess
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Repeating more iterations, the following values are obtained

1aε 2aε 3aε

67.662
18.876
4.0042

0.65798
0.07499
0.00000

3.0923
3.8118
3.9708
3.9971
4.0001
4.0001

100.00
31.887
17.409
4.5012

0.82240
0.11000

4.900
3.7153
3.1644
3.0281
3.0034
3.0001

67.662
240.62
80.23
21.547
4.5394

0.74260

0.50000
0.14679
0.74275
0.94675
0.99177
0.99919

1
2
3
4
5
6

a3a2a1Iteration

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4
3
1

3

2

1

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0001.4
0001.3

99919.0

3

2

1

x
x
x

The solution obtained  

the exact solution
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What went wrong?
Even though done correctly, the answer is not converging to the 
correct answer

This example illustrates a pitfall of Jacobi/ Gauss-Siedel method: not 
all systems of equations will converge.

Is there a fix?

Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:

∑
≠
=

>
n

j
j

ijaa
i

ii
1

The coefficient on the diagonal must be greater than the sum of the other 
coefficients in that row.


