Solution of Linear Systems

A linear combination of the variables x_1, x_2, \ldots, x_N is a sum

$$(1) a_1x_1 + a_2x_2 + \dots + a_Nx_N$$

where a_k is the coefficient of x_k for k = 1, 2, ..., N.

A linear equation in x_1, x_2, \ldots, x_N is obtained by requiring the linear combination in (1) to take on a prescribed value *b*; that is,

(2) $a_1x_1 + a_2x_2 + \dots + a_Nx_N = b.$

(3)

Systems of linear equations arise frequently, and if M equations in N unknowns are given, we write

 $a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1N}x_{N} = b_{1}$ $a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2N}x_{N} = b_{2}$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$ $a_{k1}x_{1} + a_{k2}x_{2} + \dots + a_{kN}x_{N} = b_{k}$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$ $a_{M1}x_{1} + a_{M2}x_{2} + \dots + a_{MN}x_{N} = b_{M}.$

Example 3.15. Find the parabola $y = A + Bx + Cx^2$ that passes through the three points (1, 1), (2, −1), and (3, 1). For each point we obtain an equation relating the value of x to the value of y. The result is the linear system A + B + C = 1 at (1, 1) A + 2B + 4C = -1 at (2, -1)(4)A + 3B + 9C = 1 at (3, 1). The variable A is eliminated from the second and third equations by subtracting the first equation from them. This is an application of the replacement transformation (3), and the resulting equivalent linear system is A + B + C = 1(5) B + 3C = -22B + 8C = 0.The variable B is eliminated from the third equation in (5) by subtracting from it two times the second equation. We arrive at the equivalent upper-triangular system: A + B + C = 1(6) B + 3C = -22C = 4. The back-substitution algorithm is now used to find the coefficients C = 4/2 = 2, B =-2 - 3(2) = -8, and A = 1 - (-8) - 2 = 7, and the equation of the parabola is

.

 $y = 7 - 8x + 2x^2$.

Gaussian Elimination

The augmented matrix is [A|B] and the system AX = B is represented as follows:

(7) $[A|B] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2N} & b_2 \\ \vdots & \vdots & & \vdots & \\ a_{N1} & a_{N2} & \cdots & a_{NN} & b_N \end{bmatrix}.$

The system AX = B, with augmented matrix given in (7), can be solved by performing row operations on the augmented matrix [A|B]. The variables x_k are placeholders for the coefficients and can be omitted until the end of the calculation.

Theorem 3.8 (Elementary Row Operations). The following operations applied to the augmented matrix (7) yield an equivalent linear system.

- (8) Interchanges: The order of two rows can be changed.
- (9) Scaling: Multiplying a row by a nonzero constant.
- (10) Replacement: The row can be replaced by the sum of that row and a nonzero multiple of any other row; that is: $row_r = row_r - m_{rp} \times row_p.$

Example 3.16	$x_1 + 2x_2 + x_3 + 4x_4 = 13$ $2x_1 + 0x_2 + 4x_3 + 3x_4 = 28$ $4x_1 + 2x_2 + 2x_3 + x_4 = 20$ $-3x_1 + x_2 + 3x_3 + 2x_4 = 6.$
$ \begin{array}{c c} \text{pivot} \rightarrow \\ m_{21} = 2 \\ m_{31} = 4 \\ m_{41} = -3 \end{array} \begin{bmatrix} 1 & 2 & 1 & 4 & 13 \\ 2 & 0 & 4 & 3 & 28 \\ 4 & 2 & 2 & 1 & 20 \\ -3 & 1 & 3 & 2 & 6 \end{bmatrix} $	
$ \begin{array}{c ccccc} pivot \rightarrow \\ m_{32} = 1.5 \\ m_{42} = -1.75 \end{array} \begin{bmatrix} 1 & 2 & 1 & 4 \\ 0 & -4 & 2 & -5 \\ 0 & -6 & -2 & -15 \\ 0 & 7 & 6 & 14 \end{bmatrix} - $	$\begin{bmatrix} 13 \\ 2 \\ 32 \\ 45 \end{bmatrix}$
$ \begin{array}{c} \text{pivot} \rightarrow \\ m_{43} = -1.9 \end{array} \begin{bmatrix} 1 & 2 & 1 & 4 \\ 0 & -4 & 2 & -5 \\ 0 & 0 & -5 & -7.5 \\ 0 & 0 & 9.5 & 5.25 \end{bmatrix} - 43 $	13 2 35 3.5
$\begin{bmatrix} 1 & 2 & 1 & 4 & & 13 \\ 0 & -4 & 2 & -5 & 2 \\ 0 & 0 & -5 & -7.5 & -35 \\ 0 & 0 & 0 & -9 & & -18 \end{bmatrix} \qquad x_4$	$= 2, x_3 = 4, x_2 = -1, x_1 = 3.$

Trivial pivoting

Pivoting to Avoid $a_{pp}^{(p)} = 0$

If $a_{pp}^{(p)} = 0$, row p cannot be used to eliminate the elements in column p below the main diagonal. It is necessary to find row k, where $a_{kp}^{(p)} \neq 0$ and k > p, and then interchange row p and row k so that a nonzero pivot element is obtained. This process is called *pivoting*, and the criterion for deciding which row to choose is called a *pivoting* strategy. The *trivial pivoting* strategy is as follows. If $a_{pp}^{(p)} \neq 0$, do not switch rows. If $a_{pp}^{(p)} = 0$, locate the first row below p in which $a_{kp}^{(p)} \neq 0$ and switch rows k and p. This will result in a new element $a_{pp}^{(p)} \neq 0$, which is a nonzero pivot element.

Scaled partial pivoting

tations could result in an erroneous answer. The technique of *scaled partial pivoting* or equilibrating can be used to further reduce the effect of error propagation. In scaled partial pivoting we search all the elements in column p that lie on or below the main diagonal for the one that is largest relative to the entries in its row. First search rows p through N for the largest element in magnitude in each row, say s_r :

(13) $s_r = \max\{|a_{rp}|, |a_{rp+1}|, \dots, |a_{rN}|\}$ for $r = p, p+1, \dots, N$.

The pivotal row k is determined by finding

(14)
$$\frac{|a_{kp}|}{s_k} = \max\left\{\frac{|a_{pp}|}{s_p}, \frac{|a_{p+1p}|}{s_{p+1}}, \dots, \frac{|a_{Np}|}{s_N}\right\}.$$

Now interchange row p and k, unless p = k. Again, this pivoting process is designed to keep the relative magnitudes of the elements in the matrix U in Theorem 3.9 the same as those in the original coefficient matrix A.

LU Decomposition (Triangular Factorization)

LU Decomposition

A non-singular matrix $\left[A\right]$ has a traingular factorization if it can be expressed as

[A] = [L][U]

where

- [L] = lower triangular martix
- [U] = upper triangular martix

Given $\mathbf{A} = \begin{pmatrix} 4 & 2 & 3 \\ -3 & 1 & 4 \\ 2 & 4 & 5 \end{pmatrix}$. Find matrices L and U so that LU = A.	
$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 3 \\ -3 & 1 & 4 \\ 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 2 & 3 \\ -3 & 1 & 4 \\ 2 & 4 & 5 \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 & 0 \\ -\frac{2}{4} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 3 \\ 0 & \frac{5}{2} & \frac{25}{4} \\ 2 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 2 & 3 \\ -3 & 1 & 4 \\ 2 & 4 & 5 \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 & 0 \\ -\frac{2}{4} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 3 \\ 0 & \frac{5}{2} & \frac{25}{4} \\ 0 & 3 & \frac{7}{2} \end{pmatrix} = \begin{pmatrix} 4 & 2 & 3 \\ -3 & 1 & 4 \\ 2 & 4 & 5 \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 & 0 \\ -\frac{2}{4} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 3 \\ 0 & \frac{5}{2} & \frac{25}{4} \\ 0 & 3 & \frac{7}{2} \end{pmatrix} = \begin{pmatrix} 4 & 2 & 3 \\ -3 & 1 & 4 \\ 2 & 4 & 5 \end{pmatrix} $	

LU Decomposition

Given [A][X] = [C]Decompose [A] into [L] and $[U] \Rightarrow [L][U][X] = [C]$ **Define** [Z] = [U][X]Then solve [L][Z] = [C] for [Z]

And then solve [U][X] = [Z] for [X]

Simultaneous Linear Equations: Iterative Methods

Jacobi and Gauss-Seidel Method

$x_{k+1} = \frac{7 + y_k - z_k}{4}$	-Algebraically solve each linear equation for \mathbf{x}_{i}
$21 + 4x_k + z_k$	-Assume an initial guess $(x_0, y_0, z_0) = (1, 2, 2)$
$y_{k+1} =$	-Solve for each x _i and repeat
$z_{k+1} = \frac{15 + 2x_k - y_k}{5}.$	-Check if error is within a pre-specified tolerance.

Table 3.2Convergent Jacobi Iteration for the LinearSystem (1)

k	x _k	y_k	z_k
0	1.0	2.0	2.0
1	1.75	3.375	3.0
2	1.84375	3.875	3.025
3	1.9625	3.925	2.9625
4	1.99062500	3.97656250	3.0000000
5	1.99414063	3.99531250	3.00093750
:	:	:	:
15	1.99999993	3.99999985	2.99999993
:	:	:	:
19	2.00000000	4.00000000	3.0000000

4 1.99062500 3.97656250 3.00000000 .		Jacobi				Gauss-	Seidel	
Table 3.2 Convergent Jacobi Iteration for the Linear System (1) Table 3.4 Convergent Gauss-Seidel Iteration for the System (1) k x_k y_k z_k x_k y_k z_k 0 1.0 2.0 2.0 0 1.0 2.0 2.0 0 1.0 2.0 2.0 2.0 1 1.75 3.375 3.0 1 1.75 3.75 2.95 2.95 2.95 2.9625 3 1.955 3.96875 2.98625 3.99609375 2.999031 4 1.99062500 3.97656250 3.00000000 \vdots <)	$y_{k+1} = \frac{21+4}{3}$	$\frac{x_k + z_k}{8}$	(r- y- r-) = (1	2 2)	$y_{k+1} = \frac{2}{2}$	$\frac{1+4x_{k+1}+}{8}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$(x_0, y_0, z_0) = (1$, 2, 2)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Syster	m (1)			Syster	n (1)		
1 1.75 3.375 3.0 1 1.75 3.75 2.95 2 1.84375 3.875 3.025 2 1.95 3.96875 2.98625 3 1.9625 3.925 2.9625 3 1.995625 3.99609375 2.999031 4 1.99062500 3.97656250 3.00093750 :	0	1.0	2.0	2.0	0	1.0	2.0	2.0
3 1.9625 3.925 2.9625 3 1.995625 3.99609375 2.990313 4 1.99062500 3.97656250 3.00000000 :<	1	1.75	3.375	3.0	-			
4 1.99062500 3.97656250 3.00000000 . 1.9906250 3.9909975 2.9999995 5 1.99414063 3.99531250 3.00093750 . <	2	1.84375	3.875	3.025	2	1.95	3.96875	2.98625
5 1.99414063 3.99531250 3.00093750 ::		1.9625	3.925	2.9625	3	1.995625	3.99609375	2.99903125
: : : : 9 1.99999983 3.99999988 2.9999999 15 1.99999993 3.9999985 2.9999993 10 2.00000000 4.00000000 3.000000 : : : : : : : : : :	3	1.99062500	3.97656250	3.00000000				
:: :: 9 1.99999998 3.9999999 3.000000 15 1.99999993 3.99999985 2.99999993 10 2.00000000 4.00000000 3.000000 :: <td< td=""><td>-</td><td></td><td></td><td>2 00002750</td><td>:</td><td>:</td><td>:</td><td>:</td></td<>	-			2 00002750	:	:	:	:
15 1.99999993 3.99999985 2.99999993 10 2.0000000 4.0000000 3.000000 1: :	4	1.99414063	3.99531250	3.00093750		1 0000000		
	4 5	1.99414063	3.99531250 :	3.00093750	-			
	4 5 :	:	÷	:	9	1.99999998	3.99999999	3.00000000
19 2.00000000 4.0000000 3.0000000	4 5 : 15	:	÷	:	9	1.99999998	3.99999999	
	4 5 : 15	:	÷	:	9	1.99999998	3.99999999	3.00000000

	Iteration	a_1	E	<i>a</i> ₂		<i>a</i> ₃	
	licitation	1	$\left \mathcal{E}_{a}\right _{1}$	⁴² 2	$\left \mathcal{E}_{a}\right _{2}$	3	$\left \boldsymbol{\mathcal{E}}_{a} \right _{3}$
	1	0.50000	67.662	4.900	100.00	3.0923	67.662
	2	0.14679	240.62	3.7153	31.887	3.8118	18.876
	3	0.74275	80.23	3.1644	17.409	3.9708	4.0042
	4	0.94675	21.547	3.0281	4.5012	3.9971	0.65798
	5	0.99177	4.5394	3.0034	0.82240	4.0001	0.07499
	6	0.99919	0.74260	3.0001	0.11000	4.0001	0.00000
solu	tion obtai	ned $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	= 3.000	01			
exac	t solution	[r		L			

4x - y + z = 7 $4x - 8y + z = -21$	1	Example 3.27.	Let the linear system	(1) be rearranged as f	ollows:		
-2x + y + 5z = 15	5.		-2x	+ y + 5z = 15			
		(4) $4x - 8y + z = -21$					
		()		-y + z = 7.			
			74	y = z = z			
:	Syste	em (4)					
	k	XI	VL	Zŧ			
_		<i>x</i> _k	<i>y_k</i>	<i>z_k</i>			
	0	1.0	2.0	2.0			
(0 1						
	0	1.0 -1.5	2.0 3.375	2.0 5.0			
	0 1 2	1.0 -1.5 6.6875	2.0 3.375 2.5	2.0 5.0 16.375			
	0 1 2 3	1.0 -1.5 6.6875 34.6875	2.0 3.375 2.5 8.015625	2.0 5.0 16.375 -17.25			
	0 1 2 3 4	$ \begin{array}{r} 1.0 \\ -1.5 \\ 6.6875 \\ 34.6875 \\ -46.617188 \end{array} $	2.0 3.375 2.5 8.015625 17.8125	2.0 5.0 16.375 -17.25 -123.73438			
	0 1 2 3 4 5	$ \begin{array}{r} 1.0 \\ -1.5 \\ 6.6875 \\ 34.6875 \\ -46.617188 \\ -307.929688 \\ \end{array} $	2.0 3.375 2.5 8.015625 17.8125 -36.150391	$2.0 \\ 5.0 \\ 16.375 \\ -17.25 \\ -123.73438 \\ 211.28125$			

What went wrong?

Even though done correctly, the answer is not converging to the correct answer

This example illustrates a pitfall of Jacobi/ Gauss-Siedel method: not all systems of equations will converge.

Is there a fix?

Theorem 3.15 (Jacobi Iteration). Suppose that *A* is a strictly diagonally dominant matrix. Then AX = B has a unique solution X = P. Iteration using formula (10) will produce a sequence of vectors $\{P_k\}$ that will converge to *P* for any choice of the starting vector P_0 .

Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:

$$\mathbf{a}_{ii} \Big| > \sum_{\substack{\mathbf{j}=1\\\mathbf{j} \neq i}}^{\mathbf{n}} \Big| \mathbf{a}_{ij} \Big|$$

The coefficient on the diagonal must be greater than the sum of the other coefficients in that row.

	4x -	y + z = 7 8y + z = -21 y + 5z = 15				5z = 15 z = -21 z = 7.	
	In row 2:	-2 < -8 > 1 < 4	4 + 1	In	row 1: 4 : row 2: - row 3: 5 :	8 > 4 + 1	
Table Syster	3.2 Convergent	Jacobi Iteration for		Tab		Jacobi Iteration for	the Linear
k	x _k	Уk	zk	k	xk	y _k	zk
0	1.0	2.0	2.0	0	1.0	2.0	2.0
1	1.75	3.375	3.0	1	-1.5	3.375	5.0
2	1.84375	3.875	3.025	2	6.6875	2.5	16.375
3	1.9625	3.925	2.9625	3	34.6875	8.015625	-17.25
4	1.99062500	3.97656250	3.00000000	4	-46.617188	17.8125	-123.73438
5	1.99414063	3.99531250	3.00093750	5	-307.929688	-36.150391	211.28125
÷	:	:	:	6	502.62793	-124.929688	1202.56836
15	1.99999993	3.99999985	2.99999993	:	:	:	:
÷	:	:	:		•		
19	2.00000000	.4.00000000	3.00000000				
	·		<u>.</u>				